Basic Research at GSI for the Transmutation of Nuclear Waste*

Aleksandra Kelić

GSI Darmstadt, Germany

* Work performed in the frame of the HINDAS project
Glossary

- **Fragment separator:**
 - Resolution and acceptance

- **Experimental results – general view:**
 - Velocity distributions.
 - Nuclide distributions.

- **Experimental results – specific:**
 - Dissipation in fission – statistical vs. dynamical
 - Thermal instabilities in nuclei – how hot can nucleus be
 - Even-odd structure in the final residue yields – restoring the nuclear structure effects at the end of the evaporation chain

- **Outlook.**
Motivation - Hybrid System (ADS)

- Yields of spallation neutrons.
- Production of radioactive nuclei by spallation.
- Material damages due to irradiation.

Nuclear reactions up to 1 GeV have to be known!

T. Enqvist et al., NPA686 (01)481
How-to:

The data on systematic investigation of a few representative systems (Fe, Xe, Au, Pb, U) put important constraints on the models to be improved or developed.

⇒ Inverse kinematics

In-flight identifications of heavy reaction products.

Advantage:
- all half-lives above 150 ns
- all isotopes
- kinematical properties
Goal:
Complete understanding and modelling of spallation reactions at 0.2 – 2 A GeV.

- Energy deposition in spallation.
- Decay of hot nucleus.
Experimental facility at GSI

- **UNILAC**: Up to 20 A MeV
- **SIS**: 50 – 2000 A MeV, up to 10^{11} part/spill
Resolution:

- $\Delta(B\rho)/B\rho \approx 5 \cdot 10^{-4}$
- $\Delta(\text{TOF}) \approx 100 \text{ ps}$
- From TOF $\Rightarrow \Delta(\beta\gamma)/\beta\gamma = 2.5 \cdot 10^{-3}$

After A and Z identification $\Delta(\beta\gamma)/\beta\gamma$ is given only by $\Delta(B\rho)/B\rho$.

From $B\rho \Rightarrow \Delta(\beta\gamma)/\beta\gamma \approx 5 \cdot 10^{-4}$
Liquid 1H and 2H targets

1st Measurement:

Beam

H_2 container

2nd Measurement:

Beam

H_2 container
Charge identification
From energy loss in MUSIC
\[\frac{Z}{\Delta Z} \approx 200 \] for heaviest products

Mass identification
From \(B_\rho \) and \(\beta_\gamma \)
\[\frac{A}{\Delta A} \approx 400 \]

\(^{238}\text{U} + \text{Ti} \) at 1 A GeV
M.V. Ricciardi, PhD thesis
For every nuclide:

- Recoil energy
- Production mechanism – fission / fragmentation

T. Enqvist et al, NPA658 (1999), 47.
Production cross sections

Studied systems:

<table>
<thead>
<tr>
<th>Projectile</th>
<th>Target</th>
<th>Energy [A GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>56Fe</td>
<td>1H</td>
<td>0.2 - 1.5</td>
</tr>
<tr>
<td>136,124Xe</td>
<td>1,2H, Ti, Pb</td>
<td>0.2, 0.5, 1</td>
</tr>
<tr>
<td>197Au</td>
<td>1H</td>
<td>0.8</td>
</tr>
<tr>
<td>208Pb</td>
<td>1,2H, Ti</td>
<td>0.5, 1</td>
</tr>
<tr>
<td>238U</td>
<td>1,2H, Ti, Pb</td>
<td>1</td>
</tr>
</tbody>
</table>

Data accuracy:
- Statistic – about 3%
- Systematic – 9 - 15 %

J. Taïeb et al., NPA 724 (2003) 413
M. Bernas et al., NPA 725 (2003) 213
M.V. Ricciardi, PhD thesis
GSI code ABRABLA

- Experiment

T. Enqvist et al., NPA686 (01)481

- ABRABLA calculations
Role of dissipation in fission

- **Low excitation energies:**
 - Statistical time scale much longer than the dynamical
 could "justify" the use of the Bohr-Wheeler transition-state model.

- **High excitation energies:**
 - Dynamical time scale comparable to the statistical
 fission has to be treated as a dynamical process.

Proper description of fission is important for the evaporation – fission competition in spallation reactions.
Role of dissipation in fission

$^{238}\text{U} + p$ at 1 A GeV; Experiment vs. ABRABLA calculations

Dynamical model

Transition-state model

EXP: $\sigma_{\text{fiss}} = 1.53 \pm 0.2$ b

DM: $\sigma_{\text{fiss}} = 1.52$ b

TSM: $\sigma_{\text{fiss}} = 1.73$ b

Exp. data:
J. Taïeb et al., NPA 724 (2003) 413
M. Bernas et al., NPA 725 (2003) 213
M.V. Ricciardi, PhD thesis
Thermal instabilities

- **ALADIN - 4π experiments**, only light products

- **FRS - Thermometry extended to heavy products** (K.-H. Schmidt et al, NPA 710 (02) 157)

- Unique picture ⇒ maximum temperature of ~ 5 MeV above which compound system can not survive as an entity.
Thermal instabilities

P. Napolitani, PhD thesis, PRC accepted

Thermal instabilities have to be considered in order to describe the production of light residues, especially in p-induced reactions on lower-mass targets.

 ✓

GSI
Even-odd staggering in the final residue yields

- **Even A**: even Z favoured
- **Odd A, p rich**: even Z favoured
- **Odd A, n rich**: odd Z favoured (20%)
- **N=Z**: huge staggering >50%!

- **Number of excited levels of the mother that could decay into the daughter determines the probability of a channel** (M.V. Ricciardi et al, NPA 733 (04) 299).

✓ **Restoring of the nuclear structure in the very last steps of the evaporation.**
Outlook

- Energy dependence of proton-induced spallation of 136Xe (0.2 ... 1 A GeV) at FRS. (Data partly analysed, further analysis in progress).
 ⇒ Modelling of spallation in a thick target.

- Coincidence measurement of heavy residues, light charged particles and neutrons with 56Fe at ALADIN. (Experiment in preparation).
 ⇒ Investigation of the decay of highly excited heavy nuclei.

- Full identification of both fission fragments, simultaneous measurement of neutrons, light charged particles and gammas with new R3B magnetic spectrometer. (Preparative studies).
 ⇒ Aiming for a kinematically complete fission experiment.
Experimental goal:
Full coverage of yields and velocities of heavy residues, neutrons and light charged particles.

Status:
- Most complete set of relevant data measured (~ 1000 isotopes /system, previously: ~ 20).
- 2nd generation experiment in preparation.

New information on critical topics:

http://www-w2k.gsi.de/kschmidt
Collaborations

GSI

IPN-Paris
L. Audouin, M. Bernas, B. Mustapha, P. Napolitani, F. Rejmund, C. Stéphan, J. Taïeb, L. Tassan-Got

CEA-Saclay
A. Boudard, L. Donadille, B. Fernandez, R. Legran, S. Leray, C. Villagrassa, C. Volant, W. Wlazło

University Santiago de Compostela
J. Benlliure, E. Casarejos, J. Pereira

CENBG-Bordeaux
S. Czajkowski, M. Pravikoff