CHARGE-PICKUP IN 1 A GeV Pb COLLISIONS WITH DIFFERENT TARGETS

A. Kelić a, T. Enqvist a, W. Wlazlo b, g, P. Armbruster a, J. Benlliure c, M. Bernas d, A. Boudard b, S. Czajkowski e, R. Legrain e, S. Leray b, B. Mustapha f, M. Pravikoff e, F. Rejmund d, K.-H. Schmidt a, C. Stéphan d, J. Taieb b, L. Tassan-Got d, C. Volant b

a GSI, Germany, b DAPNIA/SPhN CEA/Saclay, France, c University of Santiago de Compostela, Spain, d IPN Orsay, France, e CENBG, France, f Argonne National Laboratory, USA, g Jagiellonian University, Institute of Physics, Poland
TWO MECHANISMS:

- Quasi-elastic (direct) reaction.
- Δ-resonance formation (example: $n \rightarrow \Delta^0 \rightarrow p + \pi^-$).

WHY?

- Important test for any microscopic model on nucleon-nucleon interactions.
- These data: Po production in Pb-Bi spallation target for ADS.

BUT:

- Few data, mostly restricted to total charge-pickup cross sections.
TARGETS:
- (87.3 ± 2.2) mg/cm² liquid hydrogen.
- (206 ± 6) mg/cm² liquid deuteron.
- ‘Titanium’ ⇔ empty target container.

T. Enqvist et al., NPA 686 (2001) 481.
RESULTS: TOTAL AND PARTIAL CHARGE-PICKUP CROSS SECTIONS

<table>
<thead>
<tr>
<th></th>
<th>208Pb+p</th>
<th>208Pb+d</th>
<th>208Pb+Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{tot} [mb]</td>
<td>28 ± 6</td>
<td>30 ± 7</td>
<td>50 ± 9</td>
</tr>
</tbody>
</table>

Cross section [mb]

- 83Bi
- Pb + p
- Pb + d
- Pb + Ti
TWO STAGE PROCESS:

1. INTRA-NUCLEAR CASCADE
2. EVAPORATION / FISSION

\[\sigma_{\text{tot}} [\text{mb}] \]

<table>
<thead>
<tr>
<th></th>
<th>(^{208}\text{Pb} + p)</th>
<th>(^{208}\text{Pb} + d)</th>
<th>(^{208}\text{Pb} + \text{Ti})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_{\text{tot}})</td>
<td>(28 \pm 6)</td>
<td>(30 \pm 7)</td>
<td>(50 \pm 9)</td>
</tr>
</tbody>
</table>

\(83\text{Bi}\) partial cross sections:

\[\text{Cross section [mb]} \]

\[\text{MASS} \]
INFLUENCE OF PROJECTILE ENERGY

\[\text{197}^{\text{Au}} (0.8 \text{ A GeV}) + p \rightarrow \text{80}^{\text{Hg}}, \]
\[\text{F. Rejmund et al., NPA 683 (2001) 540.} \]

\[\text{208}^{\text{Pb}} (1 \text{ A GeV}) + p \rightarrow \text{83}^{\text{Bi}} \]
\[{}^{209}\text{Bi} + p \rightarrow {}^{208}\text{Po} \ (T_{1/2} = 2.898 \text{ y}, E_\alpha = 5.12 \text{ MeV}), \quad {}^{209}\text{Po} \ (T_{1/2} = 102 \text{ y}, E_\alpha = 4.88 \text{ MeV})\]

No data in the energy range of interest!

Calculations → differences between 35 % and 70 %.

Estimation → from measured production cross sections for \(^{207}\text{Bi}\) and \(^{208}\text{Bi}\) in \(^{208}\text{Pb} + p\) at 1 A GeV.

<table>
<thead>
<tr>
<th>(\sigma_{\text{ISABEL}}) [mb]</th>
<th>(\sigma_{\text{INCL4}}) [mb]</th>
<th>(\sigma_{\text{estim}}) [mb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{208}\text{Po})</td>
<td>2.70</td>
<td>3.64</td>
</tr>
<tr>
<td>(^{209}\text{Po})</td>
<td>0.97</td>
<td>3.53</td>
</tr>
</tbody>
</table>
SUMMARY AND OUTLOOK

Isotopically resolved charge-pickup cross sections of relativistic 208Pb projectiles in the interactions with different targets give new insight in the physics involved.

Problems with describing experimental results in the case of proton and deuteron induced charge-pickup reactions.

Consequence on the target-activity calculations for accelerator driven systems.

Need for model improvement and more data.