University of Munich Hot-Lab Facility

1972 – today: Fabrication of Radioactive Targets for Nuclear Accelarator Experiments

Nuclides so far processed:

Actinides:
- 227Ac
- 230,232Th
- 231Pa
- 233,234,235,236,238U
- 237Np
- 239,240,242,244Pu
- 241Am
- 248Cm

Other Nuclides: 14C, 129J, 210Pb, 226Ra

Historical facility development:

1972-1987: Small laboratory with home-made safety equipment, continuously adapted to the growing demands

1987: Shut down on our own initiative

1987-1997: Design and construction of a completely new facility in Cooperation with the Bavarian Ministry of Environmental Affairs

- Up-to-date safety and security standard
- Modern technological equipment for processing and handling of radioactive material

12.12.1997: Commissioning of the new facility
Technological Capabilities

Processing of

a) Standard isotopic material

b) Exotic isotopic material

by PVD (Physical Vapour Deposition)

a) Standard Isotopic material of limited specific activity and sufficient availability:

\[^{230,232}\text{Th} \]
\[^{231}\text{Pa} \]
\[^{233,234,235,236,238}\text{U} \]
\[^{237}\text{Np} \]
\[^{239,240,242}\text{Pu} \]
\[^{241,243}\text{Am} \]

Glovebox 1:

Permanently installed, cryopumped stainless steel vacuum evaporation chamber, 250 l volume, working pressure 10^{-7} mbar

Equipment:

- 2 cold crucible e-guns and 1 resistive heater
- 2 independent quartz crystal oscillators
- Remote-controlled substrate positioning mechanism

Technological capabilities:

- Production of high-quality thin film targets
- Vacuum-metallurgical procedures (refining, alloying, and annealing of metals
Standard Target Performance

<table>
<thead>
<tr>
<th>Morphology:</th>
<th>Target films of high density and smoothness, well suited for high resolution particle and fission fragment spectroscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum target thickness:</td>
<td>500-1000 (\mu g \ cm^{-2})</td>
</tr>
<tr>
<td>Backing:</td>
<td>Typically 5-40 (\mu g \ cm^{-2}) C foil</td>
</tr>
<tr>
<td>Chemical form of target film:</td>
<td>Actinide oxide (most stable compound)</td>
</tr>
<tr>
<td>Protective layer:</td>
<td>10 (\mu g \ cm^{-2}) C (if requested)</td>
</tr>
<tr>
<td>Target size:</td>
<td>Typically 1 cm(^2), maximum 5x10 cm(^2)</td>
</tr>
<tr>
<td>Thickness variation across the target:</td>
<td>Typically 5 %, in special cases (\leq 1 %)</td>
</tr>
<tr>
<td>Isotopic material consumption:</td>
<td>Minimum 1 mg for 10 (\mu g \ cm^{-2}) film thickness</td>
</tr>
</tbody>
</table>
b) Exotic isotopic material of high specific activity or limited availability:

Requirements: Processing of submilligram-quantities of material

<table>
<thead>
<tr>
<th>Isotope</th>
<th>210Pb</th>
<th>226Ra</th>
<th>227Ac</th>
<th>229Th</th>
<th>244Pu</th>
<th>248Cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bq/mg</td>
<td>2.83E9</td>
<td>3.70E7</td>
<td>2.68E9</td>
<td>7.88E6</td>
<td>6.80E2</td>
<td>1.57E5</td>
</tr>
</tbody>
</table>

Glovebox 3:

Small, replaceable, cryopumped stainl. steel vacuum chamber, working pressure 10^{-7} mbar

Equipment: Custom-designed micro-evaporation setup

Technological capabilities:

High material-economy thin film target preparation
Exotic Target Performance

Morphology:
Target films of high density and smoothness, well suited for high-resolution particle- and fission fragment spectroscopy.

Maximum target thickness:
500-800 µg/cm²

Backing:
Typically 15-40 µg/cm² C foil

Chemical form of target film:
Metal, oxide, or halide (depending on specific material)

Protective layer:
10 µg/cm² C (if requested)

Target spot size:
Typically 3-5 mm diam.

Thickness variation across the target:
5-20 % (depending on specific setup)

Isotopic material consumption:
Minimum 40 µg for 100 µg/cm² average film thickness