TASCA – **T**rans**A**ctinide **S**eparator and **C**hemistry **A**pparatus

1st Workshop on Recoil Separator for Superheavy Element Chemistry, March 2002, GSI

- community formed (> 70 participants, 10 countries, > 20 institutes)
- discussion of possible schemes for a technical realization
- discussion of possible / desired experiments

2nd Workshop on Recoil Separator for Superheavy Element Chemistry, Nov. 2003, LBNL

- BGS continues operation at LBL's 88-inch; start TASCA with NASE components
- planning for TASCA at X8/9 starts early in 2004

GSI establishes an official collaboration with TU Munich (Institut für Radiochemie) to build a dedicated physical recoil separator for coupling of chemistry experiments with superheavy elements, 2004-2006

3rd Workshop on Recoil Separator for Superheavy Element Chemistry, August 2004, GSI, TASCA04: http://www.gsi.de/tasca04/ working groups started on specific tasks for TASCA; advisory committee
Recoil separator
with maximized transmission (efficiency)
for transactinides (SHE)
from hot-fusion reactions with actinide targets,
in particular for:

* Chemical investigations of elements 104 -- 116

* Nuclear structure and nuclear reaction investigations
 of the most n-rich nuclides

* "Chemistry" in the separator – probe the influence of the gas

* Basic studies to design the next generation "best" TASCA
Chemistry Experiments with TASCA

New techniques:
- **Aqueous phase:**
 - miniaturized µ-SISAK: Bh
 - potential controlled electrodeposition: 112
- **Gas-phase:**
 - volatile/gaseous organic compounds: Rf-Bh
 - ultra-fast vacuum thermo-chromatography: 116

Proven techniques:
- **Aqueous phase:**
 - fast centrifuge system SISAK: Rf-Sg
 - quasi-continuous, fast column chromatography
- **Gas-phase:**
 - gas-chromatography (volatile compounds): Rf-Bh
 - thermo-chromatography (volatile elements) 112-114

All technical developments are ongoing programs at other institutes.
TASCA – Status - I

* TASCA ion optical calculations, design studies, .. progress (A. Semchenkov)

* TASCA magnet calculations, design studies, .. (Efremov Inst., St. Petersburg)

* NASE and UNILAC components were secured (magnets: dipole, 3 quads; 2 power supplies, vacuum chambers, stands, ...)

* The best (and only possible) UNILAC beam line (X8/9) was selected; close to chemistry laboratory

* Ion optical/beam transport calculations for beam to TASCA at X8 performed

Accelerator group starts building a new beam line to (new) Z7 on Dec. 16; it should be finished by Feb. 03, 2005.

Moving the existing X8/9 experiment to a new beam line will begin in Feb. '05

Setting up TASCA is envisioned to begin in March '05
TASCA Dipole Magnet

former "NASE" or "HECK" dipole
TASCA Quadrupole Magnets

former "NASE" or "HECK" quadrupoles
DQ$_h$Q$_v$ - configuration

A. Semchenkov
TASCA04
August 2004
TASCA – Status - II

* Detailed **floor plan** (drawing) for the **TASCA cave** was made including the beam line, the TASCA separator, infrastructure, shielding, ...

* **Shielding** material secured (concrete, paraffin)

* Major reconstruction of the **shielding** along the X-branch initiated

* Evaluation of the statics situation in X8/9 started

* First (preliminary) information was given to the **state authorities** issuing the operation permit; GSI's health physics / **radiation safety group** is involved

* Detailed **calculations** for the necessary shielding were performed and approved drawings are ready

* Estimate of total **cost** for **TASCA** and the **infrastructure** (including shielding) was made -- and was submitted to the GSI directorate after a **recommendation from the Scientific Council of GSI to build TASCA** and a positive response from the GSI directorate to do so.
WE HAVE:

- Beam line with diagnosis
- 2 vacuum pumps
- 1 dipole magnet
- 3 quadrupole magnets
- 2 power supplies
- Most stands
- Quadrupole mass spectrometer
- Vacuum chambers, beam dump
- Some preliminary detectors
- Some data acquisition
- Detector chambers
- Concrete and paraffin shielding
- Some infrastructure
- Enthusiastic colleagues...

WE NEED:

- Experiment beam diagnosis
- Wobbler
- 1 vacuum pump
- Vac. chambers - diff. pumping - target
- 2 power supplies
- Some stands
- Gas supply and control system
- New vacuum chambers, beam dump
- Focal plane detectors
- Data acquisition
- RTC
- More concrete and paraffin shielding
- Crane, water, electr., exhaust line, ...
- More enthusiastic colleagues...
Tasks / Working Packages – I – TASCA

A: Differential pumping, gas control (pressure, purity, exhaust, recycling,...)
 A. Türler et al.

B: Target (preparation, rotation, safety, control, cooling,...), window, collimator
 K. Eberhardt et al.

C: Separator: A. Semchenkov et al. (1), M. Schädel et al. (2)
 1. Ion optics, magnets, power supplies
 2. Mechanics (support structures, vacuum chambers, beam dump, ...)

D: Focal plane D. Ackermann et al. (1), A. Yakushev et al. (2)
 1. Detectors, data acquisition
 2. RTC, transport

→ http://www.gsi.de/tasca

Convener
TASCA (DQQ) – with Target Area
ARTESIA
GSI Target Wheel

For experiments at X1 with 25% duty cycle and 5 ms pulse length

2000 rpm:
120° → 10 ms
Sequence: 1-3-2-1-...