A compact decay spectroscopy set-up for SHN research
Si Detectors for SHE Research

- decay spectroscopy for SHN

- nuclear structure features of superheavy nuclei
 (decay spectroscopy after separation)
 - quasi-particle excitations → deformation/K-isomers
 - single particle levels - trends towards the next closed p- and n-shell
 - X-ray Z-identification

- reaction studies
 - isospin dependent investigations towards n-rich SHN
 - investigating feature of the interaction barrier via reaction dynamics

- detection
 - DSSD/SSSD array
 - combined with large volume Ge's
 - APFEL ASIC & FEBEX digital ADC's
 - mobile set-up

[Diagram showing superheavy nuclei with spherical and deformed shell-stabilised structures]
Nuclear Structure of SHE
- Decay Spectroscopy at SHIP/TASCA

- Isomer surviving separation
- γ emission after α decay
- CE for highly converted transitions + X-ray emission
Particle Identification and Discrimination

- Spectroscopy of SHE at SHIP/TASCA

Target (rot. wheel) → Separator (e.g. SHIP, TASCA...) → Focal Plane Detectors

- Beam
- 48Ca
- 40Ar
- 50Ti
- 54Cr
- 206Pb
- 207Pb
- 208Pb
- 209Bi

- ER
- TOF (anti-coincidence)
- 'STOP'
- 'Backward'
- γ - ray (segmented)

High eff. ε ≈ 15%
Particle Identification and Discrimination
- Spectroscopy of SHE at SHIP/TASCA

Target (rot. wheel) Separator (e.g. SHIP, TASCA)

Focal Plane

high eff. $\varepsilon \approx 15\%$

- inclusive measurement
- ER, α's, γ's and e-
- clean
- particle discrimination
- ER-\α-\γ correlations
- highly efficient
- close geometry
- stopped source

Mobile Decay Spectroscopy Set-up - MoDSS

- Si stop+box (DSSD+SSSD) combined with large volume Ge-detectors

Configuration

- **Stop detector:** 1 × DSSD (60×60 strips)
- **Box detectors:** 4 × SSSD (32 strips, TASiSpec)
- Overall efficiency similar to TASiSpec (40%)

Chamber

- Compact (overall length 35 cm)
- Al-cap with thin γ window (1,5 mm)
- Compatible due to 150 mm standard flange
- Electronics partly integrated (vacuum)

DSSD

- Integrated cooling (Cu-frame) and connection (flex-PCB)
- 60×60 strips/mm (pitch 1 mm)
- 300 µm
Electronics and read out
- 2 integrated options

2 read out options:

1. ASIC APFEL (fast shaping and amplification)
 - integrated in PCB vacuum feed through
 - cooled (separate detector and ASIC cooling)
 - 64 input channels (8 piggybacks)
 - 2 amplification factors
 - 1
 - 16/32 switchable
 - differential output

2. classic PA
 - PCB vacuum feed through
 - 2×32 channels
 - differential output

In total max. 256 channels
Electronics and DAQ
- compact front end and MBS/NUSTAR DAQ

MBS architecture

- local server + mass storage (standalone)
- 2 MBS branches

1. RIO power PC/VME
 - analog shaping and amplification (Mesytech STM16+)
 - 32-fold 12bit ADCS (Mesytec MADC, CAEN V785)

2. FEBEX + MBS-Linux PC
 - 1 FEBEX frame – 198 channels
 - event builder
 - 3 operation modes
 1. classic PA + RIO power PC/VME
 2. classic PA + FEBEX
 3. ASIC APFEL + FEBEX
Digital electronics
- **FEBEX: the GSI approach**

pipeline ADC Front End Board with optical link Extension actual version: FEBEX 3a
- 16 channels
- 50 Ms/s (optional/future 100+ Ms/s)
- 14 bit flash ADC

J. Hofmann GSI/EE

FEBEX + conventional PA
- fast timing
- deadtime free
- pulse shape analysis options

FEBEX + ASICS “APFEL”
- fast shaping (<250 ns)
- 2 amplification ranges (1x and 16x/32x)
- PANDA development – P. Wieczorek

48\text{Ca} + 176\text{Yb} \quad \alpha_1 \quad \alpha_2 \quad t_{1_2}: 7.7 \mu s \quad t_{2_3}: 308 \text{ ns}

J. Khuyagbaatar
R. Mändl

R. Mändl
bachelor thesis
Test and first application
- spectroscopy at the LISE velocity filter @ GANIL

Tests with sources summer 2014

- all solutions have been tested singly with α-source

- resolution for classic PA + analog ADC
 \[\Delta E(6\text{MeV}) < 30 \text{ keV} \]

- APFEL/classic PA + FEBEX needs some more effort
 \[\Delta E(6\text{MeV}) > 50 \text{ keV} \]

First in beam test november 2014

- $^{40}\text{Ar} + ^{174}\text{Yb} \rightarrow ^{214}\text{Ra}^*$

- test of all options (analogue and digital)

- integration in the LISE focal plane set-up

- α and α-\gamma correlations

First experiment spring/summer 2015*

- $^{50}\text{Ti} + ^{209}\text{Bi} \rightarrow ^{257}\text{Db} + 2\text{n}$

- α and α-\gamma spectroscopy for ^{257}Db, ^{253}Lr and ^{249}Md

*) not scheduled yet
Test and first application
- spectroscopy at the LISE velocity filter @ GANIL

Tests with sources summer 2014
- all solutions have been tested singly with α-source
- resolution for classic PA + analog ADC
 - ∆E(6MeV) < 30 keV
- A PFEL/classic PA + FEBEX needs some more effort
 - ∆E(6MeV) > 50 keV

First in beam test November 2014
- 40Ar + 174Yb → 214Ra*
- test of all options (analogue and digital)
- integration in the LISE focal plane set-up
- α and γ correlations

First experiment spring/summer 2015*
- 50Ti + 209Bi → 257Db + 2n
- α and γ spectroscopy for 257Db, 253Lr and 249Md

*) not scheduled yet
Test and first application
- spectroscopy at the LISE velocity filter @ GANIL

Tests with sources
- summer 2014
 - all solutions have been tested singly with α-source
 - resolution for classic PA + analog ADC
 - $\Delta E(6\text{MeV}) < 30\text{ keV}$
 - A PFEL/classic PA + FEBEX needs some more effort
 - $\Delta E(6\text{MeV}) > 50\text{ keV}$

First in beam test
- November 2014
 - $^{40}\text{Ar} + ^{174}\text{Yb} \rightarrow ^{214}\text{Ra}^*$
 - test of all options (analogue and digital)
 - integration in the LISE focal plane set-up
 - α and α-γ correlations

First experiment
- Spring/Summer 2015*
 - $^{50}\text{Ti} + ^{209}\text{Bi} \rightarrow ^{257}\text{Db} + 2\text{n}$
 - α and α-γ spectroscopy for $^{257}\text{Db}, ^{253}\text{Lr}$ and ^{249}Md

*) not scheduled yet

DSSD camber connected to LISE back end
Acknowledgement

- set-up working group and experiment collaboration

Preparation of the set-up

GSI:

J. Hoffmann (electronics design)
N. Kurz (MBS)
J. Maurer (chamber design)
S. Voltz (PCB lay-out)
P. Wieczorek (APFEL ASIC)
D. A.

GANIL:

M. Vostinar
J. Piot

PROPOSAL FOR AN EXPERIMENT

Title: Decay spectroscopy of 157Db

Collaboration: Participant names, institutions, and indicate students (S), and post-doctoral fellows (PD): M. Vostinar,1 H. Savajols,1 E. Clément,1 C. Stodel,1 B. Gall,2 D. Ackermann,2 S. Antalic,3 B. Bastin,1 L. Caceres,1 F. Dechery (PD),2 O. Dorvaux,2 A. Drouart,6 H. Faure (S),2 J. Gibelion,7 K. Hauschild,8 G. Henning (PD),8 R.-D. Herzberg,9 F.P. Heßberger,4 J. Konki,3 W. Korten,6 J. Ljungvall,8 A. Lopez-Martens,8 T. Roger,1 M. Sandzelius,3 J. Sorri,3 B. Sulignano,6 C. Theisen,6 and J.C. Thomas,1 J. Uusitalo3

1 Grand Accélérateur National d’Ions Lourds, boulevard Becquerel, 14000 Caen, France
2 Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, 67037 Strasbourg, France
3 Department of Physics, University of Jyväskylä, P.O.Box 35, 40014 Jyväskylä, Finland
4 GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Deutschland
5 Department of Nuclear Physics and Biophysics, Comenius University Bratislava, 84248 Bratislava, Slovakia
6 Commissariat à l’Energie Atomique / Saclay, 91191 Gif-sur-Yvette cedex, France
7 Laboratoire de Physique Corpusculaire de Caen, ENSICAEN, 6 boulevard Marchal Juin, 14050 CAEN Cedex, France
8 Centre National de Spectrométrie Nucléaire et de Spectrométrie de Masse, Bâtiments 104 et 108, 91405 Orsay Campus, France
9 Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE, United Kingdom
10 Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, United States of America.