Development of a rapid solvent extraction apparatus for aqueous chemistry of the heaviest elements

Yukiko Komori for a RIKEN – Niigata Univ. – JAEA – Univ. Tsukuba – Tohoku Univ. – Univ. Oslo collaboration
(The SHE aqueous chemistry collaboration at GARIS)
Introduction: Aqueous chemistry of SHEs

Chemistry of SHEs

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Half-life</th>
<th>Production rate*</th>
</tr>
</thead>
<tbody>
<tr>
<td>261Rf<sup>a</sup></td>
<td>68 s</td>
<td>420 atoms/h</td>
</tr>
<tr>
<td>262Db</td>
<td>34 s</td>
<td>70 atoms/h</td>
</tr>
<tr>
<td>265Sg<sup>a,b</sup></td>
<td>8.5 s/14.4 s</td>
<td>12 atoms/h</td>
</tr>
<tr>
<td>266Bh</td>
<td>10.7 s</td>
<td>1.7 atoms/h</td>
</tr>
</tbody>
</table>

* 248Cm target thickness: 300 μg/cm²; Beam intensity: 2 pμA

Gas: $Z = 104$–108, 112–114

Aqueous: $Z = 104$–106

Pioneering cation-exchange studies of Sg in HNO₃/HF and HNO₃

Conventional aqueous chemistry apparatus used for Rf, Db, and Sg

ARCA and AIDA: batch-wise column chromatography apparatuses with Si detectors for α/SF spectrometry

- Decay loss during aerosol collection (~30 s)
- Decay loss during α-source preparation (~30 s)
- Low detection efficiency: eff.(α) = ~30%
 - → eff.(α-α) = ~9%; eff.(α-α-α) = ~3%
- A huge amount of background radioactivities of by-products
RIKEN GARIS gas-jet system

Requirements for aqueous chemistry studies of Sg and the heavier SHEs:

- Continuous and rapid chemical separation
- Rapid and efficient α/SF detection under low-background condition

GARIS gas-jet system is ready for SHE chemistry at RIKEN:

- By-products can be removed almost completely.
- Liquid scintillation (LS) detectors with a high detection efficiency (~100%) will become available for aqueous chemistry of SHEs.

Haba et al., Chem. Lett. 38, 426 (2009).
Purpose of this study

Development of a continuous and rapid solvent extraction apparatus coupled to the GARIS gas-jet system for aqueous chemistry of the heaviest SHEs

Continuous dissolution (MDG), solvent extraction (FSE), and radiation detection with a flow LS detector

- Rapid chemical separation and α-source preparation
 - Minimum decay loss
- High-detection efficiency (\sim100%) for α-α and α-SF correlations
Feasibility of aqueous chemistry of Sg and Bh

Production and decay studies of 265Sg a,b ($T_{1/2} = 8.5 \text{ s}, 14.4 \text{ s}$) and 266Bh ($10.7 \text{ s}$):

248Cm(22Ne,5n)265Sg a,b

248Cm(23Na,5n)266Bh
Haba et al., TASCA15 contribution.

Continuous solvent extraction and LS detection (Present apparatus)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>265Sga</td>
<td>8.5</td>
<td>180</td>
<td>300</td>
<td>4</td>
<td>10</td>
<td>50</td>
<td>100</td>
<td>3.2</td>
</tr>
<tr>
<td>265Sgb</td>
<td>14.4</td>
<td>200</td>
<td>300</td>
<td>4</td>
<td>10</td>
<td>50</td>
<td>100</td>
<td>5.3</td>
</tr>
<tr>
<td>266Bh</td>
<td>10.7</td>
<td>55</td>
<td>300</td>
<td>4</td>
<td>10</td>
<td>50</td>
<td>100</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Batch-wise chemical separation (e.g. ARCA and AIDA)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>265Sga</td>
<td>8.5</td>
<td>180</td>
<td>300</td>
<td>4</td>
<td>30</td>
<td>30</td>
<td>50</td>
<td>9</td>
<td>0.02</td>
</tr>
<tr>
<td>265Sgb</td>
<td>14.4</td>
<td>200</td>
<td>300</td>
<td>4</td>
<td>30</td>
<td>30</td>
<td>50</td>
<td>9</td>
<td>0.1</td>
</tr>
<tr>
<td>266Bh</td>
<td>10.7</td>
<td>55</td>
<td>300</td>
<td>4</td>
<td>30</td>
<td>30</td>
<td>50</td>
<td>9</td>
<td>0.01</td>
</tr>
</tbody>
</table>

* Efficiencies for $\alpha-\alpha$ correlations.
This study

- Development of Membrane DeGasser (MDG) and Flow Solvent Extractor (FSE)
- Performance evaluation of MDG and FSE
- Online solvent extraction of Tc and Re with MDG-FSE
Univ. Oslo/JAEA Membrane DeGasser (MDG)

Dissolution efficiency of 91mMo ($T_{1/2} = 65$ s):
- > 80% at high flow rates of 6–24 mL/min
- decreases with a decrease of the aq. flow rate.
 50–60% at a lower flow rate of 1 mL/min
A new MDG was fabricated by modifying Univ. Oslo/JAEA-MDG to dissolve shorter-lived nuclides with high efficiencies at a low flow rate of ~1 mL/min.

RIKEN Membrane DeGasser (RIKEN-MDG)

Major modifications:
- Dead volume: ~90 μL → ~23 μL
- Static mixer → Simple T-connector

Diagram:
- Membrane filter with polyethylene support
- Millipore Fluoropore No. FGLP04700
- Pore size: 0.2 μm
- Aq. outlet capillary (i.d. = 0.5 mm)
Flow Solvent Extractor (FSE)

Development (2): FSE

Experimental (1): Performance evaluation of MDG

24-MeV d beam (5 µA)
RIKEN AVF cyclotron

Gas-jet chamber

He gas (1.5 L/min)

Beam
Targets

He/KCl aerosols

Nuclear reactions:

$^{nat}\text{Zr}(d,xn)^{90m}\text{Nb} \quad (T_{1/2} = 18.8 \text{ s})$

$^{90}\text{Nb} \quad (T_{1/2} = 14.6 \text{ h})$

$^{nat}\text{Hf}(d,xn)^{178a}\text{Ta} \quad (T_{1/2} = 2.36 \text{ h})$

Gas out
Aq. out

60-s collection → γ-ray spectrometry
Experimental (2): Performance evaluation of FSE

- Production of long-lived and no-carrier-added radiotracers at RIKEN AVF: natMo(d,xn)⁹⁵mTc (T₁/₂ = 61 d) and natW(d,xn)¹⁸³Re (T₁/₂ = 70 d)
- Extraction with FSE: HNO₃-Tri-n-octylamine (TOA) / toluene

\[\text{H}^+ + [\text{MO}_4^-] + \text{TOA} \rightleftharpoons [\text{HMO}_4 \cdot \text{TOA}]_{\text{org.}} \quad (M = \text{Tc and Re}) \]

→ Determination of distribution ratio, \(D = \frac{[A]_{\text{org.}}}{[A]_{\text{aq.}}} \); \(A \): radioactivities

<table>
<thead>
<tr>
<th></th>
<th>D vs. Capillary length</th>
<th>D vs. [TOA]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aq. phase</td>
<td>0.1, 1 M HNO₃ + ⁹⁵mTc, ¹⁸³Re</td>
<td>1 M HNO₃ + ⁹⁵mTc, ¹⁸³Re</td>
</tr>
<tr>
<td>Org. phase</td>
<td>0.01 M TOA / toluene</td>
<td>0.01, 0.05, 0.1 M TOA / toluene</td>
</tr>
<tr>
<td>Capillary length</td>
<td>5, 10, 20, 30, 40, 50, (60), 100 cm</td>
<td>100 cm</td>
</tr>
</tbody>
</table>

→ Comparison with \(D \) in equilibrium in the batch extraction (30-min shaking)
Experimental (3): Online solvent extraction of Tc and Re with MDG-FSE

- 24-MeV d beam (3–10 μA)
- $n_{at}^{}\text{Mo (5 μm x 1), n}_{at}^{}\text{W (4 μm x 5) targets}$
- He/KCl aerosols
- He gas (1.5 L/min)
- Aq.: 1 M HNO$_3$
- Org.: 0.005–0.1 M TOA / toluene

Nuclear reactions:
- $n_{at}^{}\text{Mo}(d,xn)^{92}\text{Tc} (T_{1/2} = 4.25 \text{ min})$
- $^{94}\text{Tc} (T_{1/2} = 293 \text{ min})$
- $n_{at}^{}\text{W}(d,xn)^{181}\text{Re} (T_{1/2} = 19.9 \text{ h})$

- FSE ext. (1): D vs. Capillary length, L
 $L = 5, 10, 20, 30, 40, 50, 70,$ and 100 cm
- FSE ext. (2): D vs. [TOA]
 [TOA] = 0.005, 0.01, 0.05, and 0.1 M
- Batch ext. (3-min shaking)
Results and discussion (1): Performance of MDG

The dissolution efficiency of ~60% was obtained with RIKEN-MDG for the short-lived 90mNb even at a low aq. flow rate of 1 mL/min.

→ Reduction of chemicals and radioactive wastes
Reduction of quenching effects and increase of energy resolution in α/SF-spectrometry with a LS detector.

Dissolution efficiency with MDG

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>$T_{1/2}$</th>
<th>Dissolution eff.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>90mNb</td>
<td>18.8 s</td>
<td>56 ± 2%</td>
</tr>
<tr>
<td>90gNb</td>
<td>14.6 h</td>
<td>88 ± 6%</td>
</tr>
<tr>
<td>178aTa</td>
<td>2.36 h</td>
<td>82 ± 7%</td>
</tr>
</tbody>
</table>

* He gas: 1.5 L/min; 1 M HF: 1 mL/min
Results and discussion (2): Performance of FSE

- Extraction equilibrium is attained with the 40-cm capillary.
 Time required for solutions to pass through the 40-cm capillary: ~2.4 s
- D values with FSE consistent with those by the batch method.
- FSE is applicable to determine D values in the wide D range: $D = \sim 0.1 \text{ – } \sim 20$.
Results and discussion (3): Online solvent extraction of Tc and Re with MDG-FSE

- Discrepancies in D values between FSE and the batch extractions were found for 92,94Tc at [TOA] > 0.05 M.
- Online solvent extraction of Tc and Re was successfully performed with stable and high chemical yields: $92 \pm 3\% \left(^{181}\text{Re}\right)$ during the 6-h beam time.
Summary

- We have developed a new rapid chemistry apparatus which consists of MDG and FSE for the aqueous chemistry studies of Sg and Bh at GARIS.

- Online solvent extraction of Tc and Re was successfully performed with MDG-FSE in HNO$_3$-TOA/toluene.
 - Rapid extraction equilibrium: \sim2.4 s (40-cm capillary)
 - Wide applicable D range: $D = \sim$0.1 – \sim20
 - High chemical yield: $> 90\%$ (181Re)
 - Stable running: > 6 h
 - Low flow rate: 1 mL/min

- A flow liquid scintillation detector will be developed by referring to the knowhow from SISAK.

- Interesting chemistry systems for Sg and Bh are under study using radiotracers of their homologues.
Collaborators for the aqueous chemistry at GARIS

Nishina Center for Accelerator-Based Science, RIKEN
H. Haba, S. Yanou, and K. Watanabe

Niigata Univ.
K. Ooe, M. Murakami, D., Sato, and R. Motoyama

Advanced Science Research Center, JAEA
A. Toyoshima and A. Mitsukai

ELPH, Tohoku Univ.
H. Kikunaga

Univ. Tsukuba
A. Sakaguchi and J. Inagaki

Univ. Oslo
J. P. Omtvedt